An Improved lower bound for arithmetic regularity
نویسندگان
چکیده
The arithmetic regularity lemma due to Green [GAFA 2005] is an analogue of the famous Szemeredi regularity lemma in graph theory. It shows that for any abelian group G and any bounded function f : G → [0, 1], there exists a subgroup H ≤ G of bounded index such that, when restricted to most cosets of H, the function f is pseudorandom in the sense that all its nontrivial Fourier coefficients are small. Quantitatively, if one wishes to obtain that for 1− fraction of the cosets, the nontrivial Fourier coefficients are bounded by , then Green shows that |G/H| is bounded by a tower of twos of height 1/ . He also gives an example showing that a tower of height Ω(log 1/ ) is necessary. Here, we give an improved example, showing that a tower of height Ω(1/ ) is necessary. Joint work with Shachar Lovett, Guy Moshkovitz, and Asaf Shapira. Host: Jacques Verstraete Tuesday, February 24, 2015 4:00 PM AP&M 6402 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
منابع مشابه
An Arithmetic Analogue of Fox's Triangle Removal Argument
We give an arithmetic version of the recent proof of the triangle removal lemma by Fox [Fox11], for the group Fn 2 . A triangle in Fn 2 is a triple (x, y, z) such that x + y + z = 0. The triangle removal lemma for Fn 2 states that for every ε > 0 there is a δ > 0, such that if a subset A of Fn 2 requires the removal of at least ε · 2n elements to make it triangle-free, then it must contain at l...
متن کاملThe Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملAn upper bound for the regularity of powers of edge ideals
A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$, denoted by match$(G)$. In this paper, we provide a generalization of this result for powers of edge ideals. More precisely, we show that for every graph $G$ and every $sgeq 1$, $${rm reg}( R/ I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...
متن کاملTwo Constructions for Tower-Type Lower Bounds of Szemerédi’s Regularity Lemma
The theory of random graph is one of the most important theories in modern combinatorics and theoretical computer science. This naturally leads to the following question: what is the essential property of a random graph? How can we distinguish a given graph from a random graphs? This leads to the development of pseudo-random graph theory (quasi-random graphs). [2] gives a complete survey on pse...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014